

Octal Buffer/Driver With 3-State Outputs

1 FEATURES

- Power-Supply Range: 1.65V to 5.5V
- 3-State Outputs Drive Bus Lines
- Low Power Consumption: 5µA ICC(Max)
- ±24mA Output Drive at 3V
- Low Input Current of 1µA Max
- IOFF circuitry provides partial power-down mode operation
- Extended Temperature: -40°C to +125°C
- Micro Size Packages: TSSOP20, SOP20

2 APPLICATIONS

- Network switches
- Servers
- Smart grids
- Infotainment
- Surveillance cameras

3 DESCRIPTIONS

The RS540 is an 8-bit inverting buffer/line driver with 3state outputs. The device features two output enables ($\overline{OE1}$ and $\overline{OE2}$). A High on \overline{OE} causes the associated outputs to assume a high-impedance OFF-state.

Inputs are overvoltage tolerant. This feature allows the use of these devices as translators in mixed voltage environments.

Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times. This device is fully specified for partial power down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor, the minimum value of the resistor is determined by the current-sinking capability of the driver.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
RS540	TSSOP20	6.50mm×4.40mm
	SOP20	12.80mm×7.50mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Functional Block Diagram

To Seven Other Channels

Function Table

	INPUTS				
OE 1	OE2	A PORT	Y PORT		
L	L	L	Н		
L	L	Н	L		
Х	Н	Х	Z		
Н	Х	Х	Z		

NOTE:

H=HIGH voltage level

L=LOW voltage level X=don't care

Z=high impedance OFF-state

Table of Contents

1 FEATURES	1
2 APPLICATIONS	1
3 DESCRIPTIONS	1
4 Functional Block Diagram	2
5 Revision History	4
6 PACKAGE/ORDERING INFORMATION ⁽¹⁾	5
7 PIN CONFIGURATIONS	6
8 SPECIFICATIONS	7
8.1 Absolute Maximum Ratings	7
8.2 ESD Ratings	7
8.3 Recommended Operating Conditions	8
8.4 Electrical Characteristics	9
8.5 Switching Characteristics	10
8.6 Operating Characteristics	10
8.7 Typical Characteristics	10
9 Parameter Measurement Information	11
10 Detailed Description	12
10.1 Overview	12
11 Power Supply Recommendations	12
12 Layout	12
12.1 Layout Guidelines	12
13 PACKAGE OUTLINE DIMENSIONS	13
14 TAPE AND REEL INFORMATION	15

5 Revision History Note: Page numbers for previous revisions may different from page numbers in the current version.

VERSION	Change Date	Change Item
A.1	2023/08/31	Initial version completed
A.2	2024/01/05	Update PACKAGE/ORDERING INFORMATION
A.2.1	2024/02/29	Modify packaging naming
A.3	2024/05/17	Update KEY PARAMETER LIST OF TAPE AND REEL

6 PACKAGE/ORDERING INFORMATION (1)

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING ⁽²⁾	MSL ⁽³⁾	PACKAGE OPTION
RS540	RS540XTSS20-G	-40°C ~+125°C	TSSOP20	RS540	MSL1	Tape and Reel, 4000
K5540	RS540XS20	-40°C ~+125°C	SOP20	RS540	MSL3	Tape and Reel, 1500

NOTE:

(1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.

(2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

(3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

7 PIN CONFIGURATIONS

PIN DESCRIPTION

PIN			
TSSOP20/SOP20	NAME	TYPE ⁽¹⁾	FUNCTION
1	$\overline{OE}1$	I	Output Enable (Active Low). Pull $\overline{\text{OE}1}$ high to place all outputs in 3-state mode.
2	A0	I	Data Input
3	A1	I	Data Input
4	A2	I	Data Input
5	A3	I	Data Input
6	A4	I	Data Input
7	A5	I	Data Input
8	A6	I	Data Input
9	A7	I	Data Input
10	GND	G	Ground.
11	<u></u> 77	0	Data Output
12	<u>¥</u> 6	0	Data Output
13	<u>¥</u> 5	0	Data Output
14	<u></u> ¥4	0	Data Output
15	<u></u> ¥3	0	Data Output
16	<u></u> ¥2	0	Data Output
17	<u></u> ¥1	0	Data Output
18	<u></u> ¥0	0	Data Output
19	0E2	I	Output Enable (Active Low). Pull $\overline{\text{OE}}2$ high to place all outputs in 3-state mode.
20	Vcc	Р	Supply voltage: $1.65V \le V_{CC} \le 5.5V$

(1) I=input, O=output, I/O=input and output, P=power

8 SPECIFICATIONS

8.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

SYMBOL	PARAMETER	MIN	MAX	UNIT	
Vcc	Supply Voltage Range	-0.5	6.5	V	
VI ⁽²⁾		A port	-0.5	6.5	V
VI ⁽²⁾	Input Voltage Range	Control inputs	-0.5	6.5	V
Vo ⁽²⁾	Voltage range applied to any output in the high- impedance or power-off state	Y port	-0.5	6.5	V
Vo ⁽²⁾⁽³⁾	Voltage range applied to any output in the high or low state	Y port	-0.5	V _{CC} +0.5	V
Ік	Input clamp current	V1<0		-50	mA
Іок	Output clamp current	Vo<0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V_{CC} or GND			±100	mA
0	Deduces the model increase (4)	TSSOP20		40	9C () M
ALθ	Package thermal impedance ⁽⁴⁾	SOP20		40	°C/W
۲J	Junction Temperature ⁽⁵⁾	-40	150	°C	
T_{stg}	Storage temperature	•			

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{cc} are provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD-51.

(5) The maximum power dissipation is a function of $T_{J(MAX)}$, R_{0JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A) / R_{0JA}$. All numbers apply for packages soldered directly onto a PCB.

8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-Body Model (HBM), MIL-STD-883K METHOD 3015.9		V
V(ESD)	Electrostatic discharge	Electrostatic discharge Charged-Device Model (CDM), ANSI/ESDA/JEDEC JS-002-2018		V
		Machine Model (MM), JESD22-A115C (2010)	±200	V

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.3 Recommended Operating Conditions

 V_{CC} is the supply voltage associated with the input port and output port. ⁽¹⁾⁽²⁾

PARAMETER		Vcc	MIN	TYP	MAX	UNIT	
Supply voltage	Vcc		1.65		5.5	V	
		1.65V to 1.95V	Vcc x0.65				
High-level input	(3)	2.3V to 2.7V	1.7				
Voltage (VIH)	Inputs ⁽³⁾	3V to 3.6V	2			V	
		4.5V to 5.5V	Vcc x0.7				
		1.65V to 1.95V			Vccx0.35		
Low-level input	(3)	2.3V to 2.7V			0.7		
Voltage (VIL)	Inputs ⁽³⁾	3V to 3.6V			0.8	V	
		4.5V to 5.5V			V _{cc} x0.3		
Input voltage (V _I)	Input voltage		0		5.5	V	
Output voltage (V ₀)	Output voltage		0		Vcc	V	
	•	1.65V to 1.95V			-4		
		2.3V to 2.7V			-8	1.	
High-level output current (юн)	3V to 3.6V			-24	mA	
		4.5V to 5.5V			-32		
		1.65V to 1.95V			4		
	`	2.3V to 2.7V			8		
Low-level output current (I	OL)	3V to 3.6V			24	mA	
		4.5V to 5.5V			32		
		1.65V to 1.95V			20		
Input transition rise or fall		2.3V to 2.7V			20		
$rate(\Delta t/\Delta v)$	Data inputs	3V to 3.6V			10	ns/V	
		4.5V to 5.5V			5	1	
T _A Operating free-air temp	erature	•	-40		125	°C	

(1) All unused or driven (floating) data inputs (I/Os) of the device must be held at logic HIGH or LOW (preferably V_{cc} or GND) to ensure proper device operation and minimize power.

(2) All unused control inputs must be held at Vcc or GND to ensure proper device operation and minimize power consumption.

(3) For V_{CC} values not specified in the data sheet, V_{IH} min = V_{CC} × 0.7 V, V_{IL} max = V_{CC} × 0.3 V.

8.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	CONDITIONS	Vcc	TEMP	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
	I _{OH} = -100 μA VI=VIH	1.65V to 4.5V		Vcc-0.1			
	$I_{OH} = -4mA$ $V_I = V_{IH}$	1.65V		1.2			
V _{OH}	$I_{OH} = -8mA$ $V_I = V_{IH}$	2.3V		1.9			V
	$I_{OH} = -24 \text{mA}$ $V_I = V_{IH}$	3V		2.2			
	I _{OH} = -32mA V _I =V _{IH}	4.5V	Full	3.6			
	I _{OL} = 100 μA VI =VIL	1.65V to 4.5V	Full			0.1	
	$I_{OL} = 4mA$ $V_I = V_{IL}$	1.65V				0.45	
V _{OL}	$I_{OL} = 8mA$ $V_I = V_{IL}$	2.3V				0.4	V
	I _{OL} = 24mA V _I = V _{IL}	3V				0.85	
	I _{OL} = 32mA V _I = V _{IL}	4.5V				0.89	
lı –	VI = 5.5V or GND	5.5V	+25°C			±1	μA
1	V ₁ or V ₀ = 0 to 5.5V	οv	+25°C			±1	
l _{off}	$V Or V_0 = 0 lo 5.5 V$	00	Full			±2	μA
l _{oz} ⁽³⁾	Vo = Vcc or GND,	1.65V to 5.5V	+25°C			±1	
IOZ	0E=VIH	1.05V 10 5.5V	Full			±2	μA
		$1 \langle E \rangle \langle t_0 E E \rangle \langle t_0 \rangle$	+25°C			1	
Icc Vcc supply current	$V_I = V_{CC} \text{ or } GND^{(4)}$ $I_O = 0$	1.65V to 5.5V	Full			5	μA
current		0V	Full			-2	
Δlcc	One A port at V _{CC} – 0.6V, Y port = open	3V to 5.5V	Full			50	μA
Cı	$V_I = V_{CC} \text{ or } GND$	3.3V	+25°C		3.3		pF
Co	Vo = Vcc or GND	3.3V	+25°C		5		pF

(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

(3) For I/O ports, the parameter I_{OZ} includes the input leakage current.

(4) Hold all unused data inputs of the device at V_{CCI} or GND to assure proper device operation.

8.5 Switching Characteristics

PARAMETER	FROM	то		:1.8V 15V		:2.5V .2V		=3.3V .3V		=5V .5V	UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tplh	An	Yn	4.8	18	2.1	8.1	1.8	6.3	1.5	4.8	ns
tphl		ŤП	4.0	4.0 10	2.1	0.1	1.0	0.5	1.5	4.0	115
tрнz	ŌĒ	Yn	4.8	20.7	2.3	8.7	2.1	8.5	1.3	6.2	nc
tplz		TH	4.0	4.0 20.7	2.3	2.3 0.7	D.7 Z.1	0.5	1.5	0.2	ns
tрzн	ŌĒ	Yn	11	4.1 25.1	24	2.4 13.2	17	1.7 10.1	1.6 7.7	77	nc
tpzl	UE	TH	4.1		2.4		1.7			1.1	ns

8.6 Operating Characteristics

T_A=25°C

PARAMETER		TEST CONDITIONS	Vcc=1.8V TYP	Vcc=2.5V TYP	Vcc=3.3V TYP	Vcc=5V TYP	UNIT
a (1)	Outputs enabled	CL=0,	8	9	11	13	_
C _{pd} ⁽¹⁾	Outputs disabled	f=10MHz, t _r =t _f =1ns	1	1	1.5	2	pF

(1) Power dissipation capacitance per transceiver.

8.7 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = +25°C, V_{CC}=5V, unless otherwise noted.

9 Parameter Measurement Information

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR≤10 MHz, Z₀ = 50Ω, dv/dt≥1V/ns.

D. The outputs are measured one at a time, with one transition per measurement.

E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

F. t_{PZL} and t_{PZH} are the same as t_{en} .

G. t_{PLH} and t_{PHL} are the same as t_{pd} .

H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

10 Detailed Description

10.1 Overview

The RS540 is an 8-bit inverting buffer/line driver with 3-state outputs. The device features two output enables ($\overline{0E1}$ and $\overline{0E2}$). A High on $\overline{0E}$ causes the associated outputs to assume a high-impedance OFF-state.

Inputs are overvoltage tolerant. This feature allows the use of these devices as translators in mixed voltage environments.

Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times. This device is fully specified for partial power down applications using IOFF. The IOFF circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor, the minimum value of the resistor is determined by the current-sinking capability of the driver.

11 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. The 0.1μ F and 1μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally, they will be tied to GND or V_{CC} whichever make more sense or is more convenient.

13 PACKAGE OUTLINE DIMENSIONS TSSOP20⁽⁴⁾

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
	Min	Max	Min	Max		
A ⁽¹⁾		1.200		0.047		
A1	0.050	0.150	0.002	0.006		
A2	0.800	1.050	0.031	0.041		
A3	0.390	0.490	0.015	0.020		
b	0.200	0.290	0.008	0.011		
с	0.130	0.170	0.005	0.007		
D ⁽¹⁾	6.400	6.600	0.252	0.260		
E ⁽¹⁾	4.300	4.500	0.169	0.177		
E1	6.200	6.600	0.244	0.260		
e	0.650(BSC) ⁽²⁾		0.026(BSC) ⁽²⁾			
L	0.450	0.750	0.018	0.030		
Н	0.250(TYP)		0.010(TYP)			
θ	0°	8°	0°	8°		
L1	1.00(F	REF) ⁽³⁾	0.039(REF) ⁽³⁾			

NOTE:

1. Plastic or metal protrusions of 0.15mm maximum per side are not included.

2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.

3. REF is the abbreviation for Reference.

4. This drawing is subject to change without notice.

SOP20⁽⁴⁾

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In N	Aillimeters	Dimensions In Inches			
	Min	Max	Min	Max		
A ⁽¹⁾		2.650		0.104		
A1	0.100	0.300	0.004	0.012		
A2	2.250	2.350	0.089	0.093		
A3	0.970	1.070	0.038	0.042		
b	0.390	0.470	0.015	0.019		
с	0.250	0.290	0.010	0.011		
D ⁽¹⁾	12.700	12.900	0.500	0.508		
E	10.100	10.500	0.398	0.413		
E1 ⁽¹⁾	7.400	7.600	0.291	0.299		
e	1.270(BSC) (2)		0.050(BSC) ⁽²⁾			
L	0.700	1.000	0.028	0.039		
Н	0.250(TYP)		0.010(TYP)			
θ	0°	8°	0°	8°		
L1	1.400(RE	F) ⁽³⁾	0.055(REF) ⁽³⁾			

NOTE:

1. Plastic or metal protrusions of 0.15mm maximum per side are not included.

BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
REF is the abbreviation for Reference.

4. This drawing is subject to change without notice.

14 TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP20	13"	12.4	6.75	6.95	1.20	4.0	8.0	2.0	16.0	Q1
SOP20	13"	24.4	10.75	13.55	2.65	4.0	12.0	2.0	24.0	Q1

NOTE:

1. All dimensions are nominal.

2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.