

RS1GT17 Single Schmitt-Trigger buffer

1 FEATURES

- Operating Voltage Range: 2.0V to 5.5V
- Low Power Consumption:1µA (Max)
- Operating Temperature Range: -40°C to +125°C
- Input Accept Voltage to 5.5V
- Inputs Are TTL-Voltage Compatible
- High Output Drive: ±24mA at Vcc=3.3V
- I_{off} Supports Partial-Power-Down Mode Operation
- Micro Size Packages: SC70-5

2 APPLICATIONS

- AC Receiver and
- Home Theaters
- Blu-ray Players and Home Theaters
- Desktops or Notebook PCs
- Digital Video Cameras (DVC)
- Mobile Phones
- Personal Navigation Device (GPS)
- Portable Media Player

Functional Block Diagram

3 DESCRIPTIONS

The RS1GT17 Single Schmitt-trigger buffer is designed for 2.0V to 5.5V V_{CC} operation.

The RS1GT17 device contains one buffer and performs the Boolean function Y=A. The device functions as an independent buffer with Schmitt-trigger inputs, so the device has different input threshold levels for positive-going (V_{T+}) and negative going (V_{T-}) signals to provide hysteresis (ΔV_T) which makes the device tolerant to slow or noisy input signals.

This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The RS1GT17 is available in Green SC70-5 packages. It operates over an ambient temperature range of -40°C to +125°C.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
RS1GT17	SC70-5	2.10mm×1.25mm		

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

4 FUNCTION TABLE

INPUT	OUTPUT
Α	Υ
Н	Н
L	L

Y=A H=High Voltage Level L=Low Voltage Level

Table of Contents

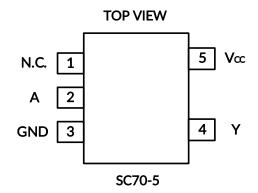
1 FEATURES	
2 APPLICATIONS	
3 DESCRIPTIONS	1
4 FUNCTION TABLE	1
5 REVISION HISTORY	3
6 PACKAGE/ORDERING INFORMATION (1)	4
7 PIN CONFIGURATIONS	5
8 SPECIFICATIONS	6
8.1 Absolute Maximum Ratings	6
8.2 ESD Ratings	6
9 ELECTRICAL CHARACTERISTICS	
9.1 Recommended Operating Conditions	7
9.2 DC Characteristics	8
9.3 AC Characteristics	9
10 PARAMETER MEASUREMENT INFORMATION	10
11 PACKAGE OUTLINE DIMENSIONS	11
12 TAPE AND REEL INFORMATION	12

5 REVISION HISTORY

Note: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item
A.1	2024/05/23	Initial version completed

6 PACKAGE/ORDERING INFORMATION (1)


PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING (2)	MSL ⁽³⁾	PACKAGE OPTION
RS1GT17	RS1GT17XC5	-40°C ~+125°C	SC70-5 (4)	1GT17	MSL3	Tape and Reel,3000

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.
- (4) Equivalent to SOT353.

7 PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	I/O TYPE (1)	FUNCTION				
SC70-5	INAIVIE	I/OTTPE	FUNCTION				
1	N.C.	-	Not connected				
2	Α	I	Input				
3	GND	Р	Ground				
4	Υ	0	Output				
5	V _{CC}	Р	Power Pin				

⁽¹⁾ I=input, O=output, P=power.

8 SPECIFICATIONS

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	٧
Vı	Input voltage range (2)		-0.5	6.5	٧
Vo	Voltage range applied to any output in the high-impedant	ce or power-off state ⁽²⁾	-0.5	6.5	٧
Vo	Voltage range applied to any output in the high or low sta	-0.5	V _{CC} +0.5	٧	
lıĸ	Input clamp current V _I <0			-50	mA
Іок	Output clamp current	Vo<0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through Vcc or GND			±100	mA
θJA	Package thermal impedance (4)	SC70-5		380	°C/W
τJ	Junction temperature (5)			150	°C
Tstg	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of V_{CC} is provided in the Recommended Operating Conditions table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.
- (5) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-body model (HBM), MIL-STD-883K METHOD 3015.9	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), ANSI/ESDA/JEDEC JS-002-2018	±1000	V
		Machine Model (MM), JESD22-A115C (2010)	±200	V

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9 ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (Full=-40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.) (1)

9.1 Recommended Operating Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
Supply voltage	Vcc	Operating	2	5.5	٧
Input voltage	Vı		0	5.5	V
Output voltage	Vo		0	5.5	V
Operating temperature	T _A		-40	+125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

7 / 13 www.run-ic.com

9.2 DC Characteristics

PARAMETER	TEST CONDITIONS	Vcc	TEMP	MIN ⁽²⁾	TYP (3)	MAX ⁽²⁾	UNIT
		2.0V		0.7		1.2	
V_{T+}	Positive going input threshold voltage	3.3V	Full	1		1.5	V
		4.5V to 5.5V		1.2		2	
		2.0V		0.3		0.6	
V _T -	Negative going input threshold voltage	3.3V	Full	0.5		0.9	٧
		4.5V to 5.5V		0.6		1.2	
		2.0V		0.3		0.8	
ΔV_T	Hysteresis (V _{T+} -V _{T-})	3.3V	Full	0.3		1	V
		4.5V to 5.5V		0.3		1.2	
	Ι _{ΟΗ} = -100μΑ	2.0V to 5.5V		V _{CC} -0.1			
	I _{OH} = -8mA	2.0V		1.6			
.,	I _{OH} = -24mA	3.3V		2.5			V
V_{OH}		4.5V	Full -	3.8			
	I _{OH} = -32mA	5.0V		4.2			
		5.5V		4.8			
	I _{OL} = 100μA	2.0V to 5.5V				0.1	
	I _{OL} = 8mA	2.0V				0.45	
.,	I _{OL} = 24mA	3.3V	- "			0.55	.,
V_{OL}		4.5V	Full			0.55	V
	I _{OL} = 32mA	5.0V				0.5	
		5.5V				0.45	
	V F FV CND	0)//- 5 5)/	+25°C		±0.1	±1	Δ.
I _I A input	V _I =5.5V or GND	0V to 5.5V	Full			±10	uA
	V V 5.5V	0) (+25°C		±0.1	±1	^
l _{off}	V _I or V _O =5.5V	0V	Full			±10	uA
	V 55V CND L O	0.0)(1. 5.5)(+25°C		0.1	1	^
Icc	V _I =5.5V or GND, I _O =0	2.0V to 5.5V	Full			10	uA
Ісст	One input at 3.4V, Other inputs at Vcc or GND	5.5V	Full			500	uA

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

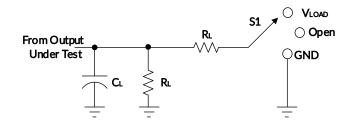
www.run-ic.com

⁽²⁾ Limits are 100% production tested at 25° C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

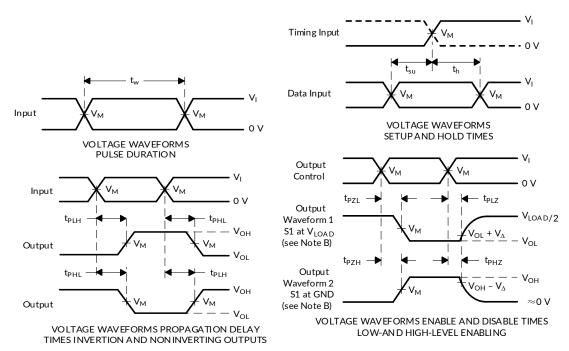
9.3 AC Characteristics

					/0\		(0)	
PARAMETER	SYMBOL	TEST CO	ONDITIONS	TEMP	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
		V _{CC} =2.0V±0.2V	C _L =30pF, R _L =500Ω			20		
Propagation Delay	t_{pd}	V _{CC} =3.3V±0.3V	C _L =50pF, R _L =500Ω	+25°C		11		ns
		V _{CC} =5V±0.5V	C _L =50pF, R _L =500Ω			7.6		
Input Capacitance	Ci	V _{CC} =5V	V _I =V _{CC} or GND	+25°C		4.2		pF
Power dissipation capacitance	C_{pd}	V _{CC} =5V	f=10MHz	+25°C		17.8		pF


⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

⁽²⁾ This parameter is ensured by design and/or characterization and is not tested in production.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

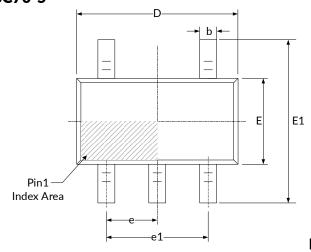


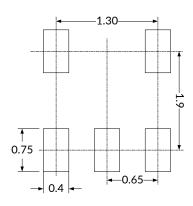
10 PARAMETER MEASUREMENT INFORMATION

TEST	\$1
tр.н/tрн.	Open
tplz/tpzL	V _{LOAD}
tрнz/tрzн	GND

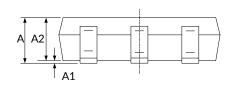
Vcc	INPUTS		V M	V		D	VΔ
	Vı	t _r /t _f	VM	VLOAD	C∟	RL	VΔ
2.0V±0.2V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	500Ω	0.15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.5V	Vcc	≤2.5ns	Vcc/2	2 x Vcc	50pF	500Ω	0.3V

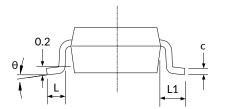
NOTES: A. C_L includes probe and jig capacitance.


- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z₀ = 50Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.


Figure 1. Load Circuit and Voltage Waveforms

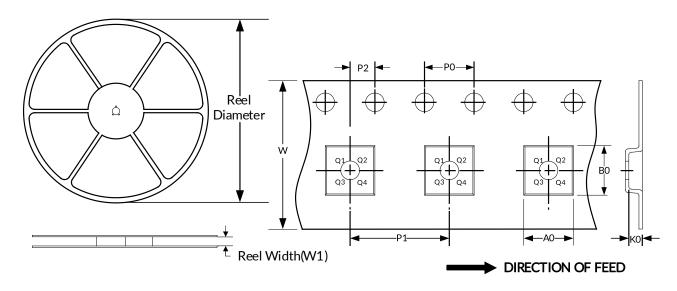
10 / 13 www.run-ic.com




11 PACKAGE OUTLINE DIMENSIONS SC70-5 (3)

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
	Min	Max	Min	Max		
A (1)	0.900	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0.150	0.350	0.006	0.014		
С	0.080	0.150	0.003	0.006		
D ⁽¹⁾	2.000	2.200	0.079	0.087		
E (1)	1.150	1.350	0.045	0.053		
E1	2.150	2.450	0.085	0.096		
е	0.650(BSC) (2)	0.026(BSC) (2)			
e1	1.300(BSC) (2)	0.051(BSC) (2)			
L	0.260	0.460	0.010	0.018		
L1	0.5	525	0.021			
θ	0°	8°	0°	8°		


NOTE:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

12 TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel	Reel	A0	B0	K0	P0	P1	P2	W	Pin1
	Diameter	Width(mm)	(mm)	Quadrant						
SC70-5	7"	9.5	2.25	2.55	1.20	4.0	4.0	2.0	8.0	Q3

NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

www.run-ic.com

IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.