

RS175 Quadruple D-Type Flip-Flop with Clear

1 FEATURES

- Operating Voltage Range: 1.65V to 5.5V
- Low Power Consumption: 8µA (Max)
- Four edge-triggered D-type flip-flops
- Asynchronous master reset
- Operating Temperature Range: -40°C to +125°C
- Micro SIZE PACKAGES: SOP16, TSSOP16

2 APPLICATIONS

- Buffer/Storage Registers
- Shift Registers
- Pattern Generators

Logic Diagram (Positive Logic)

3 DESCRIPTIONS

The RS175 is a quad positive-edge triggered D-type flip-flop with individual data inputs (nD) and complementary outputs (nQ and n \overline{Q}). The common clock (CLK) and master reset ($\overline{\text{CLR}}$) inputs load and reset all flip-flops simultaneously. The D-input that meets the set-up and hold time requirements on the LOW-to-HIGH clock transition will be stored in the flip-flop and appear at the Q output. A LOW on $\overline{\text{CLR}}$ causes the flip-flops and outputs to be reset LOW. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

This device available in Green SOP16 and TSSOP16 packages. It operates over an ambient temperature range of -40°C to +125°C.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
DC175	SOP16	9.90mm×3.90mm		
RS175	TSSOP16	5.00mm×4.40mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1 FEATURES	1
2 APPLICATIONS	1
3 DESCRIPTIONS	1
4 Revision History	3
5 PACKAGE/ORDERING INFORMATION ⁽¹⁾	4
6 PIN CONFIGURATIONS	5
6.1 PIN DESCRIPTION	5
6.2 FUNCTION TABLE	5
7 SPECIFICATIONS	6
7.1 Absolute Maximum Ratings	6
7.2 ESD Ratings	6
8 ELECTRICAL CHARACTERISTICS	7
8.1 Recommended Operating Conditions	7
8.2 DC Characteristics	8
8.3 Timing Requirements	9
8.4 Switching Characteristics	10
8.5 Operating Characteristics	10
9 Parameter Measurement Information	11
10 Detailed Description	12
10.1 Overview	12
10.2 Functional Block Diagram	12
11 Power Supply Recommendations	13
12 Layout	13
12.1 Layout Guidelines	13
13 PACKAGE OUTLINE DIMENSIONS	14
14 TAPE AND REEL INFORMATION	16

4 Revision History Note: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item
A.1	2023/12/06	Initial version completed
A.1.1	2024/02/29	Modify packaging naming

5 PACKAGE/ORDERING INFORMATION⁽¹⁾

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING ⁽²⁾	MSL ⁽³⁾	PACKAGE OPTION
DC175	RS175XTSS16	-40°C ~+125°C	TSSOP16	RS175	MSL3	Tape and Reel,4000
RS175	RS175XS16	-40°C ~+125°C	SOP16	RS175	MSL3	Tape and Reel,4000

NOTE:

(1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.

(2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

(3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

6 PIN CONFIGURATIONS

TSSOP16/SOP16

6.1 PIN DESCRIPTION

PIN			FUNCTION			
TSSOP16/SOP16	NAME	I/O TYPE ⁽¹⁾	FUNCTION			
1	CLR	I	Clear Data Input			
2	1Q	0	Output			
3	1 $\overline{\mathrm{Q}}$	0	Output			
4	1D	I	Input			
5	2D	I	Input			
6	2Q	0	Output			
7	2Q	0	Output			
8	GND	Р	Ground			
9	CLK	I	Clock Input			
10	3Q	0	Output			
11	ЗQ	0	Output			
12	3D	I	Input			
13	4D	I	Input			
14	4Q	0	Output			
15	4Q	0	Output			
16	Vcc	Р	Power pin			

(1) I=input, O=output, P=power.

6.2 FUNCTION TABLE

	INPUTS	τυο	PUT	
CLR	CLK	D	Q	Q
L	Х	Х	L	Н
Н	1	Н	Н	L
Н	1	L	L	Н
Н	L	Х	Qo	$\overline{\mathrm{Q}}_{\mathrm{O}}$

(1) H=High Voltage Level; L=Low Voltage Level; X=Don't Care

7 SPECIFICATIONS

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) $^{(1)(2)}$

			MIN	MAX	UNIT
Vcc	Supply voltage range		-0.5	6.5	V
I _{IK}	Input clamp current	$V_I < 0 \text{ or } V_I > V_{CC}$		±20	mA
Іок	Output clamp current	$V_0 < 0$ or $V_0 > V_{CC}$		±20	mA
lo	Continuous output current	V_{O} = 0 to V_{CC}		±25	mA
	Continuous current through Vcc or GND	nuous current through V _{CC} or GND			
ΑLθ	Package thermal impedance ⁽³⁾	TSSOP16		45	°C/W
ALO		SOP16		150	C/ VV
τ	Junction temperature ⁽⁴⁾		-65	150	°C
Tstg	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD-51.

(4) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

7.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-body model (HBM), MIL-STD-883K METHOD 3015.9	±2000	
V(ESD)	Electrostatic discharge	Charged-device model (CDM), ANSI/ESDA/JEDEC JS-002-2018	±1000	V
		Machine Model (MM), JESD22-A115	±200	

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8 ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (TYP values are at $T_A = +25$ °C, Full=-40°C to 125°C, unless otherwise noted.)⁽¹⁾

8.1 Re	commended	Operating	Conditions
0.110		operating	Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
Supply voltage	Vcc	Operating	1.65	5.5	V
		V _{CC} = 2 V	1.5		
Supply voltage V_{CO} High-level input voltage V_{II-} Low-level input voltage V_{II-} nput voltage V_{II-} Dutput voltage V_{II-} T_{A-} $\Delta t / A_{A-}$	N	V _{CC} = 3.3 V	2.4		
High-level input voltage	VIH	V _{CC} =4.5 V	3.15		- V
		V _{CC} = 5.5 V	3.85		
		V _{CC} = 2 V		0.5	
iupply voltage High-level input voltage ow-level input voltage nput voltage Dutput voltage	VIL	V _{CC} = 3.3 V		1	
Low-level input voltage		V _{CC} =4.5 V		1.35	- V
		V _{CC} = 5.5 V		1.65	
Input voltage	VI		0	Vcc	V
Output voltage	Vo		0	Vcc	V
		V _{CC} = 2 V		1000	
1	oltage V_{CC} Operating 1.65 el input voltage V_{CC} 2.4 V_{CC} 3.15 V_{CC} 4.5 3.15 V_{CC} 3.15 V_{CC} 5.5 3.85 V_{CC} 3.85 V_{IL} V_{CC} 2.4 V_{CC} 3.85 V_{CC} 5.5 3.85 V_{CC} 3.85 V_{IL} V_{CC} 3.3 V_{CC} 3.85 V_{IL} V_{CC} 3.3 V_{CC} <td< td=""><td></td><td>600</td><td></td></td<>		600		
Input transition rise or fail	Δt / Δν	V _{CC} =4.5 V		500	ns
		V _{CC} = 5.5 V		5.5 0.5 0.5 1 1.35 1.65 Vcc Vcc Vcc 1000 600 500 400	
Operating temperature	TA		-40	125	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

8.2 DC Characteristics

PARAMETER	TEST CONDITIONS	Vcc	TEMP	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
		2V		1.9			
	1 204	3.3V		3.2			
	Іон = -20μА	4.5V	E	4.4			V
Vон		5.5V	Full	5.4			v
	OH $ \begin{array}{r} $	4.5V		3.84			
	I _{OH} = -5.2mA	5.5V	2V 1.9 3.3V 3.2 4.5V 4.4 5.5V 5.4 4.5V 3.84 5.5V 4.69				
		2V				0.1	· V
	Ιοι = 20μΑ	3.3V				0.1	
Mar		4.5V				0.1	
VOL		5.5V	Full			0.1	
	I _{OL} = 4mA	4.5V				0.5	
	I _{OL} = 5.2mA	5.5V	$ \begin{array}{c c c c c c c } & 1.9 & & & & \\ \hline 3.2 & & & & \\ \hline 3.2 & & & & \\ \hline 3.2 & & & & \\ \hline 4.4 & & & & \\ \hline 5.4 & & & & & \\ \hline 5.4 & & & & & \\ \hline 3.84 & & & & & \\ \hline 4.69 & & & & \\ \hline 10 & 0.1 & & \\ \hline 0.1 & 0.1 & & \\ \hline 10 & 0.1 & & \\ \hline 0.1 & 0.1 & & \\ \hline 0.1 & 0.1 & & \\ \hline 10 & 0.5 & & \\ $				
L	VI=5.5V or GND	E EV	+25°C		±0.1	±1	
lı lı		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	±2	μΑ			
		E 5)/	+25°C			8	
lcc	V_1 =5.5V or GND, I_0 =0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	μΑ				
C. (Input Canadity)			+25°C		4	10	
C _i (Input Capacitance)		1.05 V LO 5.5 V	Full	$H = \begin{bmatrix} 1.9 \\ 3.2 \\ 4.4 \\ 5.4 \\ 3.84 \\ 4.69 \\ 4.69 \\ 1000 $	10	рг	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

8.3 Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			N		T _A = 25°C		T _A =-40°0	Cto 125℃	
			V cc - 2	MIN	ТҮР	MAX	MIN	MAX	UNIT
			2			6		5	
			3.3			18		15	
f_{clock}	fclock Clock frequency		4.5			31		25	MHz
			5.5			33		27	
			2	40			52		
		<u>CLD</u> Laure	3.3	20			30		
		CLR low	4.5	8			10		
			5.5	6			8		
tw	Pulse duration	CLK High or low	2	40			52		- ns -
			3.3	20			30		
			4.5	8			10		
			5.5	6			8		
		Data	2	50			65		
			3.3	30			38		
			4.5	10			12		
t _{su}	Setup time		5.5	8			10		
	before CLK ↑		2	50			65		ns
			3.3	30			38		
		CLR inactive	4.5	10			12		
			5.5	8			10		
			2		6.1				
±.	llold time det 4		3.3		2.6]
th	Hold time, data af	ler ULK T	4.5		2				ns
		5.5		1.8				1	

(1) This parameter is ensured by design and/or characterization and is not tested in production.

8.4 Switching Characteristics

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) ⁽¹⁾

PARAM ETER	FROM (INPUT)	TO (OUTPUT)	Vcc	T _A = 25°C			T _A =-40°Cto 125°C		
				MIN	ТҮР	MAX	MIN	MAX	UNIT
			2	6	12		5		- MHz
£			3.3	18	30		15		
f _{max}			4.5	31	50		25		
			5.5	33	55		27		
	CLR	Any	2		17	25.5		28.5	- ns
			3.3		8	12		13.5	
			4.5		6	9		10	
+ .			5.5		5.5	8.5		9.5	
t _{pd}	CLK	CLK Any	2		23.5	35		39	
			3.3		10.5	16		18	
			4.5		8.5	13		13.5	
			5.5		7.5	11.5		12	
tt		Any	2		10.5	15.5		18	
			3.3		5.5	8.5		10	
			4.5		4.5	7		8.5	ns
			5.5		4	6		7.5	

(1) This parameter is ensured by design and/or characterization and is not tested in production.

8.5 Operating Characteristics

T_A = +25°C

PARAMETER	TEST CONDITIONS	ТҮР	UNIT
C _{pd} Power dissipation capacitance per flip-flop	No load	35	pF

9 Parameter Measurement Information

Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z₀ = 50 Ω , t_t < 6 ns.

For clock inputs, f_{max} is measured when the input duty cycle is 50%.

The outputs are measured one at a time with one input transition per measurement.

(1) C_L includes probe and test-fixture capacitance.

Figure 1. Load Circuit for Push-Pull Outputs

Figure 2. Voltage Waveforms, Standard CMOS Inputs Pulse Duration

Figure 3. Voltage Waveforms, Standard CMOS Inputs Setup and Hold Times

(1) The greater between t_{PLH} and t_{PHL} is the same as t_{pd} .

Figure 4. Voltage Waveforms, Propagation Delays for Standard CMOS Inputs

(1) The greater between t_r and t_f is the same as t_t .

Figure 5. Voltage Waveforms, Input and Output Transition Times for Standard CMOS Inputs

10 Detailed Description

10.1 Overview

These positive-edge-triggered D-type flip-flops have a direct clear ($\overline{\text{CLR}}$) input. The RS175 devices feature complementary outputs from each flip-flop.

Information at the data (D) inputs meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not related directly to the transition time of the positive-going edge of CLK. When CLK is at either the high or low level, the D input has no effect at the output.

10.2 Functional Block Diagram

11 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1μ F and 1μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{cc}, whichever makes more sense for the logic function or is more convenient.

13 PACKAGE OUTLINE DIMENSIONS SOP16⁽³⁾

RECOMMENDED LAND PATTERN (Unit: mm)

Sympol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A ⁽¹⁾	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
с	0.170	0.250	0.006	0.010		
D ⁽¹⁾	9.800	10.200	0.386	0.402		
E ⁽¹⁾	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
е	1.27(E	3SC) ⁽²⁾	0.050(BSC) ⁽²⁾			
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

NOTE:

- 3. This drawing is subject to change without notice.

Plastic or metal protrusions of 0.15mm maximum per side are not included.
 BSC (Basic Spacing between Centers), "Basic" spacing is nominal.

TSSOP16⁽³⁾

A2 Ĵ А A1

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A ⁽¹⁾		1.200		0.047		
A1	0.050 0.150		0.002	0.006		
A2	0.800	1.050	0.031	0.041		
b	0.190	0.300	0.007	0.012		
с	0.090	0.200	0.004	0.008		
D ⁽¹⁾	4.860	5.100	0.191	0.201		
E ⁽¹⁾	4.300 4.500		0.169	0.177		
E1	6.200 6.600		0.244	0.260		
e	0.650(BSC) ⁽²⁾	0.026(BSC) ⁽²⁾			
L	0.500	0.700	0.02	0.028		
Н	0.25	БТҮР	0.01TYP			
θ	1°	7°	1°	7°		

NOTE:

1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
3. This drawing is subject to change without notice.

14 TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width(mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOP16	13"	16.4	6.50	10.30	2.10	4.0	8.0	2.0	16.0	Q1
TSSOP16	13"	12.4	6.90	5.60	1.20	4.0	8.0	2.0	12.0	Q1

NOTE:

1. All dimensions are nominal.

2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.