CMOS 4-Channel Analog Multiplexer/Demultiplexer #### 1 FEATURES - -3dB Bandwidth: 180MHz - Single Supply Operation: +2.5V to +5.5V - Low ON Resistance: 24Ω(TYP) With 5V Supply - High Off-Isolation: -77dB (R_L = 50Ω, f = 1MHz) - Break-Before-Make Switching - Binary Address Decoding on Chip - Operating Temperature Range: -40°C to +125°C - PACKAGES: MSOP10 ### **2 APPLICATIONS** - Sensors - Analog and Digital Multiplexing and Demultiplexing - A/D and D/A Conversion - Signal Gating - Battery-Operated Equipment - Factory Automation - Appliances - Communications Circuits #### **3 DESCRIPTIONS** The RS2255 is a CMOS analog IC configured as 4-channel multiplexers. This CMOS device can operate from 2.5 V to 5.5 V. The RS2255 device are digitally-controlled analog switches. It has low on-resistance (24 Ω TYP) and very low off-leakage current (1nA TYP). The RS2255 is available in Green MSOP10 packages. It operates over an ambient temperature range of -40°C to +125°C. #### **Device Information (1)** | PART
NUMBER | PACKAGE | BODY SIZE (NOM) | |----------------|---------|-----------------| | RS2255 | MSOP10 | 3.00mm×3.00mm | (1) For all available packages, see the orderable addendum at the end of the data sheet. # **4 Functional Diagrams of RS2255** # **Table of Contents** | 1 FEATURES | | |--------------------------------------|----| | 2 APPLICATIONS | | | 3 DESCRIPTIONS | | | 4 Functional Diagrams of RS2255 | | | 5 Revision History | 3 | | 6 PACKAGE/ORDERING INFORMATION | 4 | | 7 PIN CONFIGURATIONS | | | 8 SPECIFICATIONS | 6 | | 8.1 Absolute Maximum Ratings | | | 8.2 ESD Ratings | 6 | | 8.3 Recommended Operating Conditions | 6 | | 8.4 ELECTRICAL CHARACTERISTICS | 7 | | 8.5 TYPICAL CHARACTERISTICS | 9 | | 9 Parameter Measurement Information | 10 | | 10 PACKAGE OUTLINE DIMENSIONS | 12 | | 11 TADE AND REEL INCORMATION | 13 | # **5 Revision History** Note: Page numbers for previous revisions may different from page numbers in the current version. | VERSION | Change Date | Change Item | |---------|-------------|--| | C.4 | 2021/11/25 | official version datasheet | | C.5 | 2023/12/21 | 1.Added the TAPE AND REEL INFORMATION 2.Added MSL on Page 4@RevC.4 3.Update PIN DESCRIPTION on Page 2@RevC.4 4.Update ELECTRICAL CHARACTERISTICS | | C.5.1 | 2024/03/08 | Modify packaging naming | # **6 PACKAGE/ORDERING INFORMATION (1)** | PRODUCT | ORDERING
NUMBER | TEMPERATURE
RANGE | PACKAGE
LEAD | PACKAGE
MARKING (2) | MSL (3) | PACKAGE
OPTION | | |---------|--------------------|----------------------|-----------------|------------------------|---------|--------------------|--| | RS2255 | RS2255XN | -40°C ~+125°C | MSOP10 | RS2255 | MSL3 | Tape and Reel,4000 | | #### NOTE: - (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation. - (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device. - (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications. # **7 PIN CONFIGURATIONS** # **PIN DESCRIPTION** | NAME | PIN | FUNCTION | |--------|--------|---| | NAME | MSOP10 | FUNCTION | | X2 | 1 | Analog Switch Normally Open Input or Output 2. | | Х3 | 2 | Analog Switch Normally Open Input or Output 3. | | X1 | 3 | Analog Switch Normally Open Input or Output 1. | | ENABLE | 4 | Inhibit. Drive ENABLE low or connect to GND for normal operation. Drive ENABLE high or connect to Vcc to turn all switches off. | | GND | 5 | Ground. | | В | 6 | Digital Address "B" Input. | | Α | 7 | Digital Address "A" Input. | | X0 | 8 | Analog Switch Normally Open Input or Output 0. | | Х | 9 | Analog Switch Common Input or Output. | | Vcc | 10 | Positive Analog and Digital Supply Voltage. | # **FUNCTION TABLE** | ENADLE INDUT | INPUT | STATES | ON CHANNIEL (C) | |--------------|-------|--------|-----------------| | ENABLE INPUT | В | Α | ON CHANNEL(S) | | 1 | Х | Х | NONE | | 0 | 0 | 0 | XO | | 0 | 0 | 1 | X1 | | 0 | 1 | 0 | X2 | | 0 | 1 | 1 | X3 | X=Don't care NOTE: Input and output pins are identical and inter-changeable. Either may be considered an input or output; signals pass equally well in either direction. #### **8 SPECIFICATIONS** #### 8.1 Absolute Maximum Ratings Over operating free-air temperature range (unless otherwise noted) (1) | SYMBOL | | PARAMETER | | | MAX | UNIT | |------------------|--------------------------|-------------------------|---|------|---------|------| | Vcc | Supply Voltage | | | -0.3 | 6 | V | | VIN | Input Voltage (All input | s) | | -0.3 | Vcc+0.3 | \ \ | | l _{IN} | Switch Input Current | Any one input | | -20 | +20 | A | | IPEAK | Peak Switch Current | Pulsed at 1ms Duration, | Pulsed at 1ms Duration, <10% Duty Cycle | | +40 | mA | | θја | Package thermal imped | ance ⁽²⁾ | MSOP10 | | 200 | °C/W | | Τ _J | Junction Temperature (| 3) | | -40 | 150 | °C | | T _{stg} | Storage temperature | | | -65 | +150 |] | ⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. - (2) The package thermal impedance is calculated in accordance with JESD-51. - (3) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB. ### 8.2 ESD Ratings The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only. | | | | VALUE | UNIT | |------------------------|-------------------------|----------------------------|-------|------| | V. | Electrostatic discharge | Human-body model (HBM) | ±4500 | V | | V _(ESD) Ele | | Charged-device model (CDM) | ±1500 | V | #### **ESD SENSITIVITY CAUTION** ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### **8.3 Recommended Operating Conditions** Over operating free-air temperature range (unless otherwise noted) | SYMBOL | PARAMETER | MIN | MAX | UNIT | |----------|-----------------------|-----|------|------| | V_{CC} | Supply Voltage | 2.5 | 5.5 | V | | T_A | Operating temperature | -40 | +125 | °C | # **8.4 ELECTRICAL CHARACTERISTICS** $V_{CC} = 5.0 \text{ V or } 3.3 \text{V}$, FULL= -40°C to +125°C, Typical values are at $T_A = +25$ °C. (unless otherwise noted) | PARAMETER | SYMBOL | CONDITIONS | Vcc | TA | MIN ⁽²⁾ | TYP (3) | MAX ⁽²⁾ | UNIT | |----------------------|---|---|--------------|-------|--------------------|----------------|--------------------|------| | ANALOG SWITCH | | | | | • | | | | | Analog Signal Range | V _{X_} , V _X | | | FULL | 0 | | Vcc | ٧ | | 0. 0. 1. | | \/ | 5) (| +25°C | | 24 | 30 | Ω | | | D | V_{CC} =5V, I_X =1mA | 5V | FULL | | | 35 | Ω | | On-Resistance | +25 | +25°C | | 50 | 60 | Ω | | | | | | V_{CC} =3.3 V , I_X =1 mA | 3.3V | FULL | | | 65 | Ω | | On-Resistance Match | 5 0 | V 5V 4 A 6 1 1 ON | 5) (| +25°C | | 1 | 4 | Ω | | Between Channels | | V _{CC} =5V, I _X =1mA Switch ON | 5V | FULL | | | 5.3 | Ω | | On-Resistance | R _{FLAT} (ON) | V _{CC} =5V, I _X =1mA Switch ON | E) (| +25°C | | 8 | 11 | Ω | | Flatness | | | 5V | FULL | | | 14 | Ω | | X_ Off, X Off, X On, | I _{x_(OFF)} , I _{x(OFF)} , I _{x(ON)} | V _{CC} =5V, V _X =1V, 4.5V
V _X =4.5V, 1V | 5V | +25°C | | 1 | 100 | nA | | Leakage Current | | V _{CC} =3.3V, V _X _=1V, 3V
V _X =3V, 1V | 3.3V | +25°C | | 1 | 100 | nA | | DIGITAL CONTROL IN | NPUTS (1) | | | | | | | | | Logic Input Logic | V _{AH} , V _{BH} , | | 5V | +25°C | 1.7 | | | ٧ | | Threshold High | $V_{\overline{ENABLE}}$ | | 3.3V | +25°C | 1.7 | | | ٧ | | Logic Input Logic | $V_{AL}, V_{BL},$ | | 5V | +25°C | | | 0.5 | V | | Threshold Low | $V_{\overline{ENABLE}}$ | | 3.3V | +25°C | | | 0.5 | ٧ | | Input-Current High | I _{ah} , I _{bh} ,
I _{enable} | V_A , V_B , $V_{\overline{ENABLE}} = V_{CC}$ | 3.3V to 5V | +25°C | | 1 | 100 | nA | | Input-Current Low | I _{al} , I _{bl} ,
I _{enable} | V _A , V _B , V _{ENABLE} = 0V | 3.3V to 5V | +25°C | | 1 | 100 | nA | ⁽¹⁾ All unused digital inputs of the device must be held at VIO or GND to ensure proper device operation. www.run-ic.com ⁽²⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method. ⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. # **ELECTRICAL CHARACTERISTICS (continued)**Vcc = 5.0 V or 3.3V, FULL= -40°C to +125°C, Typical values are at T_A = +25°C. (unless otherwise noted) | PARAMETER | SYMBOL | CONDITIONS | Vcc | TA | MIN | TYP | MAX | UNIT | |---------------------------|----------------------|--|------|-------|-----|-------|-----|------| | DYNAMIC CHARACTERISTICS | | | | | | | | | | A.I.I. T T. | | V_{X} = 3V/0V, R_L = 300 Ω , C_L = 35pF, See Figure 2 | 5V | +25°C | | 160 | | ns | | Address Transition Time | ttrans | V_{X} = 3V/0V, R_L = 300 Ω , C_L = 35pF, See Figure 2 | 3.3V | +25°C | | 240 | | ns | | ENABLE Turn-On Time | 4 | $V_{X_{-}} = 3V$, $R_{L} = 300\Omega$, $C_{L} = 35pF$, | 5V | +25°C | | 90 | | nc | | ENABLE Turn-On Time | t _{ON} | See Figure 3 | 3.3V | +25°C | | 140 | | ns | | ENABLE Turn-Off Time | toff | $V_{X_{-}} = 3V, R_{L} = 300\Omega, C_{L} = 35pF,$ | 5V | +25°C | | 70 | | nc | | ENABLE Turn-Off Time | LOFF | See Figure 3 | 3.3V | +25°C | | 100 | | ns | | Break-Before-Make Time | 4_ | $V_{X_{-}} = 3V, R_L = 300\Omega, C_L = 35pF,$ | 5V | +25°C | | 50 | | ns | | Delay | t _D | See Figure 4 | 3.3V | +25°C | | 80 | | ns | | Charge Injection | | $R_S = 0\Omega$, $C_L = 1$ nF, See Figure 5 | 5V | 10500 | | 6 | | рC | | Charge Injection | Q | $R_S = 0\Omega$, $C_L = 1$ nF, See Figure 5 | 3.3V | +25°C | | 4 | | рC | | Off Isolation | Oiso | R_L = 50 Ω , f = 1MHz, See Figure 6 | 5V | +25°C | | -77 | | dB | | -3dB Bandwidth | DIA | D 500 | 5V | +25°C | | 180 | | MHz | | -3dB Bandwidth | BW | $R_L = 50\Omega$ | 3.3V | +25°C | | 180 | | MHz | | Input Off-Capacitance | C _{X_(OFF)} | f = 1MHz, See Figure 7 | 5V | +25°C | | 5 | | рF | | Output Off-Capacitance | C _{X(OFF)} | f = 1MHz, See Figure 7 | 5V | +25°C | | 13 | | рF | | Output On- Capacitance | C _{X(ON)} | f = 1MHz, See Figure 7 | 5V | +25°C | | 20 | | pF | | Total Harmonic Distortion | THD | $R_L = 600\Omega,5V_{P-P}, f = 20Hz \text{ to } 20kHz$ | 5V | +25°C | | 0.7 | | % | | POWER REQUIREMENTS | | | | | | | | | | Power Supply Range | Vcc | | | FULL | 2.5 | | 5.5 | ٧ | | Dower Comply Company | | $V_{CC} = 5.0V$, V_A , V_B , $V_{\overline{ENABLE}} = V_{CC}$ or 0 | 5V | +25°C | | 0.001 | 2 | uA | | Power Supply Current | Icc | V_{CC} = 3.3V, V_A , V_B , $V_{\overline{ENABLE}}$ = V_{CC} or 0 | 3.3V | +25°C | | 0.001 | 1 | uA | # **8.5 TYPICAL CHARACTERISTICS** NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. Figure 1. Typical Ron as a Function of Input Voltage # **9 Parameter Measurement Information** Figure 2. Address Transition Times (ttrans) Figure 3. Switching Times (ton, toff) Figure 4. Break-Before-Make Time Delay (t_D) # **Parameter Measurement Information (continued)** Figure 5. Charge Injection (Q) MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS . OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH . ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH . SIGNAL DIRECTION THROUGH SWITCH IS REVERSED ; WORST VALUES ARE RECORDED . Figure 6. Off Isolation, On Loss Figure 7. Capacitance # 10 PACKAGE OUTLINE DIMENSIONS MSOP10 (3) RECOMMENDED LAND PATTERN (Unit: mm) | Cl I | Dimensions I | n Millimeters | Dimensions In Inches | | | |------------------|---------------|---------------|----------------------|---------------------|--| | Symbol | Min | Max | Min | Max | | | A ⁽¹⁾ | 0.820 | 1.100 | 0.032 | 0.043 | | | A1 | 0.020 | 0.150 | 0.001 | 0.006 | | | A2 | 0.750 | 0.950 | 0.030 | 0.037 | | | b | 0.180 | 0.280 | 0.007 | 0.011 | | | С | 0.090 | 0.230 | 0.004 | 0.009 | | | D ⁽¹⁾ | 2.900 | 3.100 | 0.114 | 0.122 | | | е | 0.50(BSC) (2) | | 0.020(| BSC) ⁽²⁾ | | | E (1) | 2.900 | 3.100 | 0.114 | 0.122 | | | E1 | 4.750 | 5.050 | 0.187 | 0.199 | | | L | 0.400 | 0.800 | 0.016 | 0.031 | | | θ | 0° | 6° | 0° | 6° | | #### NOTE: - Plastic or metal protrusions of 0.15mm maximum per side are not included. BSC (Basic Spacing between Centers), "Basic" spacing is nominal. This drawing is subject to change without notice. # 11 TAPE AND REEL INFORMATION REEL DIMENSIONS #### **TAPE DIMENSION** NOTE: The picture is only for reference. Please make the object as the standard. # **KEY PARAMETER LIST OF TAPE AND REEL** | Package Type | Reel
Diameter | Reel
Width(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P0
(mm) | P1
(mm) | P2
(mm) | W
(mm) | Pin1
Quadrant | |--------------|------------------|-------------------|------------|------------|------------|------------|------------|------------|-----------|------------------| | MSOP10 | 13" | 12.4 | 5.20 | 3.30 | 1.20 | 4.0 | 8.0 | 2.0 | 12.0 | Q1 | #### NOTE: - 1. All dimensions are nominal. - 2. Plastic or metal protrusions of 0.15mm maximum per side are not included. #### IMPORTANT NOTICE AND DISCLAIMER Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party. These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.